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Abstract

Masuko, Guilherme de Moraes; Gimenes, Nathalie (Advisor); Medeiros,
Marcelo (Co-Advisor). Forecasting Returns on High-Frequency
Environment: A Comparative Study of Econometric Models
and Machine Learning Techniques. Rio de Janeiro, 2024. 49p. Disser-
tação de Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

Forecasting returns on financial assets has been an important task
throughout the history of the financial economy. This study employs machine
learning (ML) techniques to predict portfolio returns based on the size factor,
aiming to not only improve predictions but also understand the underlying
source of predictability. Amid the challenge of identifying relevant predictors
in noisy data, this research employs a rolling window approach, incorporating
three lags of stock returns as candidate predictors to project returns one minute
ahead. Benchmark models, including in-sample averaging and autoregressive
approaches, are explored alongside ML techniques such as Ridge, LASSO,
AdaLASSO, and Random Forest. We consistently identify the superiority of
ML models over benchmark models in terms of predictability, with the Random
Forest model standing out as the most effective. Furthermore, analysis of
the predictors selected by the models revealed that they are predominantly
unexpected, short-lived and sparse.

Keywords
Forecasting; Machine Learning; High-dimensional Data; High-

frequency; Asset Pricing; Finance.



Resumo

Masuko, Guilherme de Moraes; Gimenes, Nathalie; Medeiros, Marcelo.
Previsão de Retornos em Ambiente de Alta Frequência: Um
Estudo Comparativo de Modelos Econométricos e Técnicas de
Aprendizado por Máquina. Rio de Janeiro, 2024. 49p. Dissertação de
Mestrado – Departamento de Economia, Pontifícia Universidade Católica
do Rio de Janeiro.

A previsão de retornos sobre ativos financeiros tem sido uma tarefa im-
portante durante toda a história da economia financeira. Este estudo emprega
técnicas de aprendizado por máquina (ML) para prever retornos de portfólio
com base no fator tamanho, visando não apenas melhorar as previsões, mas
também compreender a fonte subjacente de previsibilidade. Em meio ao desafio
de identificar preditores relevantes em dados ruidosos, esta pesquisa emprega
uma abordagem de janela móvel, incorporando três defasagens de retornos de
ações como candidatos a preditores para projetar retornos um minuto à frente.
Modelos de benchmark, incluindo a média dentro da amostra e abordagens au-
torregressivas, são explorados junto com técnicas de ML como Ridge, LASSO,
AdaLASSO e Random Forest. Identificamos consistentemente a superioridade
dos modelos de ML sobre os modelos benchmark em termos de previsibili-
dade, com o modelo Random Forest se destacando como o mais eficaz. Além
disso, a análise dos preditores selecionados pelos modelos revelou que eles são
predominantemente inesperados, de curta duração e esparsos.

Palavras-chave
Previsão; Aprendizado por Máquina; Dados em Alta Dimensão; Alta

Frequência; Apreçamento de Ativos; Finanças.
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1
Introduction

Forecasting returns on financial assets represents an important topic in
the field of financial economics. This study aims to address this challenge by
employing machine learning (ML) techniques as well as traditional methods as
benchmark to predict portfolio returns based on the size factor. Using a broad
and comprehensive set of stock returns as predictors, our main objective goes
beyond improving forecasts, but also seeking to understand the underlying
source of predictability in these returns.

The identification of relevant predictors for predicting returns in financial
markets has been one of the main research motivations. This task is notably
challenging considering highly noisy data - low signal-to-noise ratio (Timmer-
mann (2018)) - due to the inherently unpredictable nature of returns.

Historically, this identification process has been characterized by a thor-
ough and well-founded analysis of companies, often dependent on the indi-
vidual experience of the researcher. However, given the growing and complex
availability of financial data, there is a demand for models capable of not only
efficiently manage the considerable volume of information, but also to accu-
rately identify and utilize the most pertinent data for analysis.

In this context, recent studies, such as Han et al. (2023), integrate ML
models into the framework proposed by Fama and MacBeth (1973), analyzing
the cross-section of stock returns and using 207 company characteristics as
predictors at a monthly frequency. In the study, extensions of penalized
regressions and combinatorial strategies (ensembling) were used in response to
traditional models, in addition to exploring a Random Features model (Neural
Networks with only one hidden layer containing a large number of nodes) as
a non-linear alternative. These models have presented significant advances in
mitigating overfitting problems found in conventional approaches like Ordinary
and Weighted Least Squares methods (OLS and WLS, respectively).

For example, the work of Dong et al. (2022) reveals that, by using 100
portfolios of long-short anomalies as predictors of market excess returns on a
monthly basis, a variety of ML techniques, including forecast combination and
reduction of dimensionality, efficiently extract predictive signals in a high-
dimensional configuration, obtaining out-of-sample R2 between 0.89% and
2.81%.

Avramov, Cheng and Metzker (2023) show that investment strategies
based on deep learning, using neural networks, have proven profitable, espe-
cially in periods of high market volatility. This finding supports the idea that
ML techniques combine multiple weak and difficult-to-identify sources of in-
formation into a meaningful signal.

On the other hand, in an intra-day context, the work of Chinco, Clark-
Joseph and Ye (2019) showed, by estimating minute-by-minute forecast models
for a set of 250 shares daily, that the use of the Least Absolute Shrinkage
and Selection Operator (LASSO) (Tibshirani (1996)) captures a different set
of information to those considered in a benchmark model, adding a gain
in predictability measured through a combination of predictions (Granger



and Ramanathan (1984)). At the same time, Aleti, Bollerslev and Siggaard
(2023) adopted LASSO to regularize predictive regressions of returns in
the intraday market, selecting between returns from a varied set of lagged
factors, highlighting the robustness and applicability of this technique in high-
frequency scenarios.

This high-frequency environment has gained prominence due to signifi-
cantly better results in terms of predictability compared to lower frequencies.
The substantial improvement in the results obtained at high frequency can
be attributed to Fama (1970)’s market efficiency hypothesis. In low-frequency
scenarios, models that achieve good results are likely to be adopted by the
asset management industry due to their easy applicability, leading to competi-
tive pressure and, consequently, the reestablishment of balance in the financial
market. In contrast, in high-frequency settings, the consistency and durability
of results can be attributed to stronger entry barriers.

The models covered in this work make predictions one minute ahead
using a rolling window, thus offering estimates and predictions to ensure
their applicability and obtaining profits. This approach entails significant
technological costs, thus making the consistent level of predictability more
affordable. Aït-Sahalia et al. (2022) add to this debate by exploring different
time intervals, showing that predictability of R2

OS ≈ 15%,1 when examining
Intel (INTC), at a frequency of 5 seconds dissipates monotonically when
expanding to larger intervals, reaching negative R2

OS already at the interval
of 5 minutes.

This study uses benchmark models widely used in the literature, such
as the within-sample mean and autoregressive models with h lags (defined
by the Bayesian Information Criterion) to predict portfolio returns based
on the size factor with a minute in advance. Furthermore, it uses machine
learning models in a high-dimensional environment due to the use of three-
lag returns from a large set of stocks listed on the New York Stock Exchange
(NYSE), Nasdaq (NASDAQ) and American Stock Exchange (AMEX). The
model is configured with a rolling window to estimate the parameters for each
prediction, employing the Ridge, LASSO and AdaLASSO linear models, in
addition to Random Forest as a non-parametric alternative. In addition to
forecasting size-based portfolio returns, this study goes further by investigating
what type of predictor is selected through model selection performed by
LASSO and AdaLASSO, as well as which predictors obtained greater relative
importance by Random Forest.

The use of ML methods is crucial in high-frequency environments due
to their ability to adapt to a large number of explanatory variables, requiring
fewer observations for robust estimates. These models adjust to consider only
the set of variables relevant to predicting returns at such high frequencies,
focusing only, in our case, on the last few minutes of data through the
estimation windows.

The preliminary findings of this study highlight the superior performance
of the non-parametric Random Forest model, which excels in both adopted
measures: out-of-sample R2 and Accuracy. The LASSO and AdaLASSO mod-

1Aït-Sahalia et al. (2022) uses the infeasible out-of-sample average as a benchmark model
compared to forecasts, a much harder measure to beat.



els also demonstrate commendable efficacy, achieving significantly positive re-
sults. Interestingly, while the Ridge model shows modest performance in terms
of out-of-sample R2, it delivers surprisingly strong results in Accuracy.

The structure of this study is outlined as follows: Section 2 covers details
regarding the data set used in this work, including the set of stocks considered
for each trading day and details on the construction of the portfolio based on
size factor. In Section 3, we justify the use of ML techniques, in addition to
discussing traditional models widely used in predictive environments, aiming
to quantify the benefit arising from the use of more advanced methods.
Subsequently, in Section 4, results based on widely recognized quality measures
are presented, such as the out-of-sample R2 and the Accuracy operator, to
evaluate the capacity of models in predicting values and movements one minute
in advance. Section 5 provides a thorough analysis of the selected predictors,
while Section 6 concludes.



2
Data

In this section, we deepen the exploration of the data for the analy-
sis carried out in this study. We detail the sources of data on stock returns,
highlighting the scope and origin of this information. Furthermore, we thor-
oughly examined the construction of the portfolio based on the size factor,
emphasizing the formulation and strategies adopted in its composition. This
analysis offers a panoramic view of the crucial data sets used in the research,
highlighting their fundamental importance for subsequent analyses.

2.1
Stock Returns

The stock returns data used in this study were obtained from CRSP
(Center for Research in Security Prices) and TAQ (Trade and Quote), covering
the extensive range of trading days between January 2005 and December 2019,
totaling 3773 trading days. This data incorporates a wide range of stocks listed
on major U.S. stock exchanges such as the New York Stock Exchange (NYSE),
Nasdaq (NASDAQ), and American Stock Exchange (AMEX). Recorded at
one-minute intervals, this data generates 389 daily observations for each traded
share, with trading hours from 9:31 am to 3:59 pm, excluding the last minute
to mitigate possible distortions arising from the closing auction.

A careful filtering step was implemented, removing stocks with a closing
price of less than $5 on the previous day. Furthermore, for computational pur-
poses, stocks with more than 20% zero returns were systematically excluded,
resulting in a much more restricted set of candidate predictors for each es-
timation window, without significantly compromising informational integrity.
Figure A.1 illustrates the evolution of the number of companies included in
the stock returns data over time, before and after the filtering process.

After this filtering process, 33 trading days without the presence of shares
were identified, characterizing days of low liquidity in the US financial market.
This resulted in the number of days in our sample being reduced from 3773
to 3740. Notably, we observed a recurring pattern on these specific dates: the
nine days before the Independence Day holiday (July 4th), the 15 consecutive
days following the Thanksgiving Day (celebrated on the fourth Thursday of
November) and, finally, nine days on Christmas Eve were also excluded.

2.2
Size Factor-Based Portfolio Returns

The target portfolio to which we direct our forecasts will be built based
on the factor investing approach. Factor investing represents an investment
strategy that directs the allocation of a portfolio based on the factors that
influence the performance of selected assets. Theoretically, this strategy seeks
to expand diversification, generate returns above the market average and
manage risks more effectively.



These factors can cover macroeconomic aspects, aiming to capture sys-
temic and larger-scale events, as well as style factors, categorizing different
types of assets. The core of factor investing lies in the formation of a portfolio
aligned to a rule based on a specific factor, which allows capturing aggregate
movements in the economy and the financial market.

In the context of factor-based portfolio construction, it is essential to
highlight that all companies contained in the original data set are considered,
without going through the filtering process applied to the returns data used in
the models. This procedure encompasses stocks that have counterparts in the
dataset covered in Giglio, Kelly and Kozak (2023) and Haddad, Kozak and
Santosh (2020). Figure A.2 highlights the good correspondence between the
two bases: stock returns and factors.

The ordering of companies in the factor database is based on the values of
specific characteristics of each company. This process categorizes shares listed
on the NYSE, NASDAQ and AMEX exchanges into ten percentiles. Although
there are 55 company characteristics as ranking criteria, for computational
power purpose, this work focuses only on the size factor based on the market
capitation characteristic. It is important to highlight that the breakpoints for
forming these percentiles are established only based on shares listed on the
NYSE, following the approach adopted in Fama and French (2016).

In this study, our focus is exclusively on the size characteristic, measured
by the market capitalization of each company. The size factor aims to identify
a pattern between companies with high and low market value. While Table
A.1 presents descriptive statistics of the average daily returns for the ten
size factor portfolios, each representing a decile, Figure A.3 provides a visual
representation of the distribution of average daily returns of these portfolios.

By following the approach proposed by Kozak, Nagel and Santosh (2020),
we build a portfolio composed of long and short positions, specifically incor-
porating the top and bottom three percentiles of stock returns, respectively,
based on the size factor distribution. Figure A.4 illustrates the distribution of
companies between long and short positions in this context.

The weighting of the portfolio based on the size factor is carried out using
weights derived from market capitalization, adhering to practices established
in academic research in finance. In this way, the portfolio based on the size
factor is composed of portfolios weighted by the market value considered within
each of the long and short positions.

In mathematical terms, the portfolio return associated with the size
factor on day d and minute m is calculated by Equation 2-1:

fm,d =
∑

i∈T3,d

ωi,d · ri,m,d −
∑

j∈B3,d

ωj,d · rj,m,d (2-1)

Here, ωi,d = MarketCapi,d∑
i∈T3,d

MarketCapi,d
and ωj,d = MarketCapj,d∑

j∈B3,d
MarketCapj,d

represent the
weights based on market value, for each day, for the set of shares comprised in
long and short positions, while T3,d and B3,d denote the subsets of companies
belonging to the top three deciles and bottom three deciles of the size factor,
respectively, on day d.

Figures A.5 and A.6 offer a statistical perspective on portfolio behavior
over time, as well as the dispersion of returns in relation to the average,



respectively, through the visualization of the time series and distribution of
the average daily returns of the portfolio based on the size factor.



3
Models

The methodology adopted in this study incorporates elements established
by Chinco, Clark-Joseph and Ye (2019), employing a rolling window composed
of 150 observations. This approach aims to estimate parameters in order to
provide projections for a time horizon of one minute ahead, considering three
lags of candidate predictors in most cases.

For example, for the first forecast on a specific day the procedure involves
using the rolling window containing two and a half hours of data and a setting
of 3 lags. In this context, the estimation of parameters occurs considering data
between 9:34 am and 12:03 pm, aiming to predict the returns of factors based
on characteristics at 12:04 pm. It is important to mention that data from 9:31
am to 9:33 am is excluded due to lags.

Subsequent projections follow an analogous sequence, expanding the
rolling window to the range between 9:35 am and 12:04 pm for the next
forecast, scheduled for 12:05 pm. This procedure continues until the last
forecast, scheduled for 3:59 pm. The visual representation of this process for a
specific day is illustrated in Figure A.7.

The methodological approach of this study is based on previously es-
tablished concepts, such as the use of a rolling observation window and the
consideration of time lags. This strategy aims to capture dynamic patterns
and relevant characteristics to predict future returns.

3.1
Benchmark Models

In this section, we explore three fundamental benchmark models for
financial forecasting. The first model uses the average of the values in the rolling
window, providing a direct baseline through simple averaging to generate
predictions. The second model adopts an autoregressive approach of order 3
to make predictions. In turn, the third model, also autoregressive, adapts its
h order through the Bayesian Information Criterion (BIC), where hmax = 10
is the maximum number of lags considered as candidate predictors, offering
dynamic flexibility in determining the model order.

These benchmark models offer valuable points of comparison for evaluat-
ing the performance of more complex prediction techniques, providing essential
context for evaluating the predictive accuracy and robustness of the ML models
discussed later.

3.2
Machine Learning Models

In this section, we delve into the world of machine learning models in fi-
nancial forecasting. Parametric models such as Ridge, LASSO (Least Absolute
Shrinkage and Selection Operator) and AdaLASSO (Adaptive LASSO) will be
explored, along with the non-parametric Random Forest model.



ML models have gained prominence due to their effectiveness in pre-
dictive capacity in financial contexts. The adoption of ML models is based
on their suitability for complex predictive scenarios. Its applicability emerges
from the intrinsic ability to learn patterns from data, enabling the modeling
of linear and non-linear relationships and adaptation to environments with
multiple explanatory variables. This flexibility and adaptability are critical in
high-frequency contexts, where the nature of data often presents complexities
that challenge traditional approaches.

Before diving into the details of these specific models, it is important
to understand the concept of parametric models. In summary, parametric
models take on a specific functional form, characterized by a fixed number
of parameters that are estimated from the available data. The Ridge, LASSO
and AdaLASSO models are examples of this type of model and appear as
extensions of Penalized Least Squares.

These models respond to the need to deal with high-dimensional envi-
ronments, a common scenario in this research context, where the number of
explanatory variables exceeds the number of observations (p > T ). In this
environment, obtaining the uniqueness of the parameters via Ordinary Least
Squares (OLS) becomes unfeasible due to the impossibility of achieving the
rank condition, rank(X ′X) = p. The inclusion of regularization terms in OLS
optimization problems offers the feasibility of unique estimates.

Furthermore, the application of penalized regression techniques aims to
mitigate the overfitting often associated with OLS, a phenomenon widely
documented in the literature. The essence of the Penalized Least Squares
problem is represented by Equation 3-1.

β̂(λ) = arg min
β∈Rp

 T∑
t=1

(Yt − β′X t)2 +
p∑

j=1
pλ (|βj| ; α, data )

 (3-1)

where pλ (|βj| ; α, data) is a non-negative penalty function indexed by the
regularization parameter λ responsible for control the number of parameters
in the model.

To determine the regularization parameter in penalized regression mod-
els, two approaches are commonly used: Cross-Validation (CV) and Informa-
tion Criterion (IC). The Cross-Validation method consists of dividing the esti-
mation sample into several subsamples, using part for estimation and another
for evaluation. The goal is to identify the regularization parameter that results
in the lowest Mean Square Error (MSE) among various combinations of sam-
ple divisions for estimation and evaluation. However, this technique may not
be the most appropriate in time series environments, leading us to opt for an
Information Criterion.

Among the various Information Criteria available, we chose the Bayesian
criterion (BIC) to select the regularization parameter. BIC considers both the
MSE and the number of parameters added to the model. This selection is
performed using an optimization problem expressed in Equation 3-2.

λBIC = arg min
λ∈Λ

[
T ln[σ̂2(λ)] + df(λ) ln(T )

]
(3-2)

Here, σ̂2(·) represents the Mean Square Error (MSE), while df(·) indi-



cates the number of variables included in the model. The BIC criterion, by
simultaneously considering model complexity and data adequacy, offers a ro-
bust approach to choosing the regularization parameter.

3.2.1
Ridge

Ridge, as the initial method of penalized regressions to be discussed, was
first introduced into the literature by Hoerl and Kennard (1970). This model
uses the ℓ2 norm in the penalty function, defined as pλ (|βj| ; α, data) = λβ2

j .
Due to its strictly convex nature, estimates are found directly using the closed
expression β̂Ridge = (X ′X + λI)−1X ′Y .

3.2.2
LASSO (Least Absolute Shrinkage and Selection Operator)

LASSO (Least Absolute Shrinkage and Selection Operator), introduced
by Tibshirani (1996), is a method belonging to penalized regressions. This
model incorporates a form of regularization based on the ℓ1 norm, where
the penalty term is defined as pλ (|βj| ; α, data ) = λ |βj|. This formulation
discourages the inclusion of weak or irrelevant coefficients, assuming the
assumption of sparsity in the model, that is, only a limited number s =∑

j 1βj ̸=0 of p regressors differs from zero. Unlike Ridge, which only reduces in
magnitude parameter estimates, LASSO tends to cancel out many parameters,
effectively taking them to zero, thus also performing model selection.

Although it is not a strictly convex problem especially in high-
dimensional environments, Tibshirani (2013) demonstrates that, under the
assumption of regressors drawn from a continuous probability distribution,
the uniqueness of the LASSO solution has probability one. In the context of
stock returns, it is reasonable to make this assumption, considering the fea-
sibility that the regressors are in fact derived from a continuous probability
distribution.

3.2.3
AdaLASSO (Adaptive LASSO)

AdaLASSO (Adaptive LASSO) Zou (2006), the last parametric model
discussed in this section, is an extension of the previously discussed LASSO.
This extension introduces an idiosyncratic penalty component to each regressor
in the original LASSO penalty function, defined as pλ (|βj| ; α, data) = λwj |βj|.
The definition of this component may vary, including the inverse of the Ridge
or OLS estimates, when this is feasible. In this work, we chose to configure it
as the inverse of the LASSO estimates itself, wj =

(∣∣∣β̂j,LASSO

∣∣∣ + 1√
T

)−τ
, with

τ = 1, as frequently found in the literature. To avoid divergences, we added
a positive constant term to the calculation, considering that the LASSO sets
some regressors of the model to zero.

The inclusion of AdaLASSO is motivated by its model selection consis-
tency feature, achieved through the Weighted Irrepresentable Condition (WIC)
assumption. This condition, unlike LASSO, incorporates the penalty compo-



nent for each of the regressors, making it more viable, as demonstrated by
Medeiros and Mendes (2016). Considering the objective of model selection
analysis, the adoption of this technique appears to be pertinent.

3.2.4
Random Forest

In contrast to parametric models, non-parametric models do not assume a
specific functional form defined by a fixed set of parameters. This characteristic
gives non-parametric models greater flexibility to adjust to the data, allowing
adaptation to complex and non-linear patterns present in the data.

The non-parametric Random Forest model falls into the class of Ensemble
Models and shares similarities with Bagging (Bootstrap Aggregating). While
in Bagging, several Bootstrap samples are taken and, in parallel, a predictor
model is run for each of them, in the case of Random Forest, each predictor
model must be set as a regression tree.

Unlike Bagging, in Random Forest only a random subset of q variables
is selected, from the total set of p variables for each split node in each
regression tree. Similar to Bagging, each regression tree is built from a
bootstrap sample N, selecting observations with replacement from the original
data set. The two parameters related to this context were set to 0.7 and 0.5,
respectively, representing the proportion of variables for each division node
and the proportion of data for each regression tree.

Denoting Q as the set of variables selected at each division node, the
Random Forest method searches, for each k ∈ Q, a threshold x that divides
the sample from Bootstrap N in two subsets

N+(k, x) = {t ∈ N : Xt,k > x} e N−(k, x) = {t ∈ N : Xt,k ≤ x}

where Xt,k is the t-th observation of the k-th variable.
Denoting Ȳ + by the mean of Yt in the subset N+(k, x) and Ȳ − by the

mean of Yt in the subset N−(k, x). The division node (k, x) is chosen in order
to minimize the problem:

k̂, x̂ = argmink,x

 ∑
t∈N+(k,x)

(
Yt − Ȳ +

k,x

)2
+

∑
t∈N−(k,x)

(
Yt − Ȳ −

k,x

)2


The tree construction process continues recursively, repeating this process
Z times (number of division nodes). The stopping criterion adopted in this
work is the maximum number of tree depths, set to 5.

The prediction function of the b-th regression tree is therefore given by
the following expression:

f̂b(Xnew) =
∑

j

β̂j,b1{Xnew∈Rj,b}

where β̂j,b is simply the average of the observations of the dependent variables
in the estimation data located in the partition Rj,b.



Finally, the prediction of the Random Forest model with B trees is the
average of these predictions:

Ŷnew = 1
B

B∑
b=1

f̂b(Xnew)

where B = 500 is adopted in this study.
Just like in the LASSO and AdaLASSO models, where we employ their

model selection characteristics, in the non-parametric Random Forest model,
we will use the feature importance as a measure to evaluate the main predictors
in the process of forecasting the portfolio returns based on the size factor. At
each division node z, the variable k is selected to maximize the reduction in
MSE. By denoting δ̂2

z as the gain in MSE with respect to no splitting, the
relative importance of a predictor k in a given tree f is computed by the
following formula.

Ik(f) =
Z∑

z=1
δ̂2

z1{iz=k}

where Z is the number of splitting nodes and iz is the index of the splitting
variable.

In summary, for the Ridge, LASSO and AdaLASSO models, the predic-
tion of portfolio returns based on the size factor is modeled using Equation
3-3.

fm,d = α +
3∑

j=1
β′

jrm−j,d + ηm,d (3-3)

where fm,d represents the size factor-based portfolio returns for minute m and
day d, and rm−j,d is a vector of the j-th lagged stock returns described in
Section 2.

While for the Random Forest model, the prediction of portfolio returns
based on the size factor is expressed through Equation 3-4.

fm,d = 1
B

B∑
b=1

fb((rm−1,d, rm−2,d, rm−3,d)′) (3-4)

It is important to note that three lags of all stock returns will be employed
as candidate predictors.



4
Results

To evaluate each model’s prediction, we rely on two widely used measures,
the out-of-sample coefficient of determination (R2

OS) and Accuracy. Among the
results obtained in this study, we have predictions from the models discussed
in the Chapter 3 and the true values, between the period from 12:04 pm to
3:59 pm, totaling 236 predictions for each of the days in our sample. This way,
both measurements will be calculated at daily frequency, that is, for each day,
we calculate R2

OS and Accuracy for each model using the 236 predictions. It
is also worth highlighting that the results will be presented as the monthly
average of the results computed on a daily basis, thus obtaining a statistic
for standard deviation, enabling the representation of a confidence interval for
these results.

4.1
Out-of-sample R2 (R2

OS)
To assess how well models predict, empirical finance research basically

follows two out-of-sample measures of R2. The first is the measurement in its
centered version, that is, when computing the predictive quality of a model,
what we are actually doing is comparing this prediction with a benchmark
model, often set as the in-sample mean of the predicted variable, as discussed
in Campbell and Thompson (2008). Thus, the measure of R2

OS represented by
Equation 4-1 presents positive values when the model predictions are better
than the prediction calculated using the in-sample mean, while negative values
of R2

OS determine worse model predictions in relation to the computation of
the average values within the sample.

R2
OS(f d, f̂ d) = 1 −

∑
m(fm,d − f̂m,d)2∑

m(fm,d − 1
L

∑
l fm−l,d)2 (4-1)

where f d and f̂ d represent, respectively, the vectors of the true returns of
the size-based portfolio and the returns predicted by a given model for day
d. The terms fm,d and f̂m,d denote, respectively, the actual values of the size-
based portfolio return and the values predicted by the model for the minute
m and day d. The parameter m runs through all the minutes in which model
predictions occurred, covering the interval from 12:04 pm to 3:59 pm. In turn,
the parameter l runs through the minutes of the rolling window, made up of
L observations.

The second measurement of out-of-sample R2 differs from the first in
relation to the benchmark model to be compared. Setting this model to simply
the value zero, the measure, used mostly in more recent research, is known
as the non-centered version of R2

OS. The choice for the centered version of
R2

OS is made for two reasons: firstly, one of the benchmark models addressed
by this work is the historical in-sample mean of the rolling window, and
secondly because the rolling window contains only 150 return observations
at a frequency of one minute, thus causing the sample average to obtain values



very close to zero. Therefore there is no great relevance in the choice between
the two measures.

Exploring the performance of the AR(3) and AR(h) models, presented in
Figures 4.1 and 4.2, in high-frequency financial environments reveals a signifi-
cant challenge in overcoming the predictive accuracy of simple benchmarks as
the in-sample mean. Despite the theoretical sophistication of these autoregres-
sive models, which are designed to leverage historical data points to predict
future returns, their effectiveness in the context of our study was limited. On
average, both models exhibited negative out-of-sample values of R2, indicat-
ing a struggle to consistently provide predictive power beyond what could be
inferred from the historical average of the data.

Figure 4.1: Out-of-Sample R-squared of AR(3) Model

This figure presents the results in terms of R2
OS for the AR(3) predictive model. The R2

OS is calculated from
Equation 4-1 based on the predicted and true values from the first forecast at 12:04 pm to the last one at
3:59 pm for a given day. The solid black line represents the monthly average of these results, while the gray
band illustrates the 95% confidence interval of these results. The black dashed line represents the average of
the model results for the entire analyzed period, while the red dashed line represents the benchmark model
represented by the in-sample mean.

This result serves as a powerful reminder of the complexities inherent in
modeling financial markets at high frequencies. It suggests that the dynamic
and often unpredictable nature of these environments can make traditional
econometric approaches less effective, especially when trying to capture the
nuances of market movements over very short time frames.

In essence, the modest performance of the AR(3) and AR(h) models
was already expected since financial markets are approximately efficient and,
therefore, finding predictability in them is a challenging task.

These results altogether highlight the need for financial modelers to
consider alternative strategies, potentially incorporating more elaborate tech-
niques and different data sources capable of adapting more dynamically to
rapid market changes, to improve pr’edictive performance in high-frequency
trading contexts.

The performance of the Ridge regression model, as shown in Figure
4.3, highlights the challenges in high-frequency financial forecasting, especially
when the model incorporates predictors that may not significantly impact



Figure 4.2: Out-of-Sample R-squared of AR(h) Model

This figure presents the results in terms of R2
OS for the predictive model AR(h) (h defined using the Bayesian

Information Criterion). The R2
OS is calculated from Equation 4-1 based on the predicted and true values

from the first forecast at 12:04 pm to the last one at 3:59 pm for a given day. The solid black line represents
the monthly average of these results, while the gray band illustrates the 95% confidence interval of these
results. The black dashed line represents the average of the model results for the entire analyzed period,
while the red dashed line represents the benchmark model represented by the in-sample mean.

portfolio returns. Initially, the model presents poor performance, a trend
that continues with high volatility in its predictive accuracy. This volatility
suggests that, although Ridge regression attempts to mitigate overfitting
through regularization, it may erroneously diminish the influence of important
predictors or, conversely, fail to adequately penalize predictors that contribute
little to portfolio predictability.

Such results reflect the critical balance needed in the selection and
weighting of predictors in financial models. In the case of Ridge regression,
considering irrelevant predictors can lead to an underestimation of essential
market signals or an over-reliance on less impactful variables. This limitation
points to the need for models capable of selecting truly important predictors
or also capable of estimating their nonlinear structure. Models that prioritize
predictor selection and capture the nonlinear dynamics of financial markets
can offer more effective forecasting tools in the fast-paced environment of high-
frequency trading.

When examining the performance of the linear machine learning models
LASSO and AdaLASSO, which are detailed in Figures 4.4 and 4.5, a distinct
pattern emerges that differentiates these models in our analysis. During cer-
tain intervals, both models demonstrated positive and remarkably significant
results, underlining their potential in effectively predicting high-frequency fi-
nancial returns. This performance contrasts with some of the traditional mod-
els we examined, showing the strengths of these regularization techniques in
increasing predictive power.

The LASSO model, with its inherent ability to perform variable selection
by reducing less important predictor coefficients to zero, offers an approach
capable of dealing with high-dimensional data from financial markets. This
feature not only improves the interpretability of the model, but also reduces



Figure 4.3: Out-of-Sample R-squared of Ridge Model

This figure presents the results in terms of R2
OS for the Ridge predictive model. The R2

OS is calculated from
Equation 4-1 based on the predicted and true values from the first forecast at 12:04 pm to the last one at
3:59 pm for a given day. The solid black line represents the monthly average of these results, while the gray
band illustrates the 95% confidence interval of these results. The black dashed line represents the average of
the model results for the entire analyzed period, while the red dashed line represents the benchmark model
represented by the in-sample mean.

Figure 4.4: Out-of-Sample R-squared of LASSO Model

This figure presents the results in terms of R2
OS for the LASSO predictive model. The R2

OS is calculated from
Equation 4-1 based on the predicted and true values from the first forecast at 12:04 pm to the last one at
3:59 pm for a given day. The solid black line represents the monthly average of these results, while the gray
band illustrates the 95% confidence interval of these results. The black dashed line represents the average of
the model results for the entire analyzed period, while the red dashed line represents the benchmark model
represented by the in-sample mean.



Figure 4.5: Out-of-Sample R-squared of AdaLASSO Model

This figure presents the results in terms of R2
OS for the AdaLASSO predictive model. The R2

OS is calculated
from Equation 4-1 based on the predicted and true values from the first forecast at 12:04 pm to the last
one at 3:59 pm for a given day. The solid black line represents the monthly average of these results, while
the gray band illustrates the 95% confidence interval of these results. The black dashed line represents
the average of the model results for the entire analyzed period, while the red dashed line represents the
benchmark model represented by the in-sample mean.

the risk of overfitting, which is crucial in a high-frequency context where the
signal-to-noise ratio tends to be particularly low.

Likewise, the AdaLASSO model, an adaptive version of LASSO, further
refines this process by assigning different weights to the regularization of
each coefficient. This adaptability makes AdaLASSO particularly effective in
environments where the predictive relevance of variables can change over time,
as is often the case in financial markets. This improvement in the penalty
process, carried out in two stages, significantly reinforces the robustness of the
model.

The positive results observed during specific periods for both models
highlight their ability to not only adapt to the complex dynamics of financial
data, but also to extract meaningful predictive signals from a vast data set.
This suggests that the incorporation of such machine learning techniques can
significantly improve the toolkit for financial analysts looking to predict asset
returns with greater accuracy and reliability.

The non-parametric Random Forest model clearly shows its superior-
ity in the domain of high-frequency financial forecasting, as evidenced by its
performance depicted in Figure 4.6. The adaptability of this model to the dy-
namic and complex environment of financial markets highlights its robustness,
particularly in identifying non-linear relationships between predictors that tra-
ditional linear models often ignore. The Random Forest approach, which in-
tegrates multiple decision trees to make more accurate and stable predictions,
inherently takes into account interactions and dependencies between variables,
allowing for a more complex understanding of the factors relevant in predicting
portfolio returns based on the factor size.

This methodology not only improves the predictive power of the model,
but also offers a quantitative analysis of the importance of individual predic-



Figure 4.6: Out-of-Sample R-squared of Random Forest Model

This figure presents the results in terms of R2
OS for the AdaLASSO predictive model. The R2

OS is calculated
from Equation 4-1 based on the predicted and true values from the first forecast at 12:04 pm to the last
one at 3:59 pm for a given day. The solid black line represents the monthly average of these results, while
the gray band illustrates the 95% confidence interval of these results. The black dashed line represents
the average of the model results for the entire analyzed period, while the red dashed line represents the
benchmark model represented by the in-sample mean.

tors, facilitating a deeper analysis of the dynamics that govern this market.
The Random Forest model’s ability to perform well in diverse market con-
ditions without the need for a pre-defined functional form of the non-linear
interactions of predictors is a testament to its versatility and effectiveness in
financial forecasting.

Furthermore, the success of the Random Forest model in this study
illustrates the potential benefits of applying machine learning techniques to
analyzing financial data. Encourages further exploration of non-parametric
models and advanced computational methods to improve the predictive power
of forecasts. The model’s success in capturing nonlinear patterns presents a
compelling argument for its inclusion in the arsenal of tools of modern financial
researchers.

The results in terms of R2
OS over the entire study period are briefly

encapsulated in Table 4.1, offering an overview of the comparative performance
of various forecasting models . This table aggregates the mean and standard
deviation of the R2

OS values, providing a statistical summary that elucidates
the relative effectiveness and consistency of each model in predicting the size-
based portfolio.

Table 4.1: Descriptive Results of Out-of-Sample R2 (%)
This table presents the descriptive statistics of the mean and standard deviation for the results of the
AR(3), AR(h) models with h determined by the Bayesian information criterion, Ridge, LASSO, AdaLASSO
and Random Forest, in terms of R2

OS. The R2
OS was calculated using Equation 4-1.

AR(3) AR(h) Ridge LASSO AdaLASSO Random Forest
Mean -1.3680 -0.4730 -7.0858 1.7784 1.8245 7.6053
Standard Deviation 4.1137 4.3211 16.5859 3.2705 3.4889 7.0627

When summarizing these results, it becomes clear that forecasting fi-
nancial markets with high accuracy remains a challenge, as evidenced by the
varying degrees of success in the models tested. However, the analysis also high-



lights the potential for certain models, especially machine learning approaches
like Random Forest, to adapt and function robustly within the complex and
often unpredictable picture of financial data. These findings underscore the
importance of continued exploration in model choice, emphasizing the need
for financial modelers to employ a diverse toolkit that can accommodate the
complex dynamics of market behavior.

4.2
Accuracy

The Accuracy measure, also described in Aït-Sahalia et al. (2022),
provides valuable information about the predictive performance of a model
by quantifying the proportion of predicted returns f̂m,d that share the same
sign as the realized returns fm,d. The measure, represented by Equation 4-2, is
much less ambitious than R2

OS. While the latter tells us how close the model’s
prediction came to the true value, the measure of Accuracy simply concerns
whether the model has predictive power over the direction of returns for each
minute. Even so, the measure is extremely important in a finance scenario,
where knowing significantly about the movements of an asset can generate
profitability.

Accuracy(f d, f̂ d) = 1
M

∑
m

1{f̂m,d·fm,d>0} (4-2)

where 1{f̂m,d·fm,d>0} is an indicator function that evaluates to 1 when the
product of predicted and actual returns is greater than zero, indicating accurate
predictions, and 0 otherwise.

The initial evaluation of the models in terms of Accuracy begins with the
in-sample mean model, as illustrated in Figure 4.7. This model demonstrates
superior performance when compared to the AR(3), AR(h) and Ridge models
in the context of R2

OS. However, when it comes to outperforming a simple
benchmark – conceptually similar to flipping a coin, where heads predict a
positive movement and tails a negative one – the in-sample mean model does
not present a clear advantage.

This phenomenon can largely be attributed to the inherently conservative
nature of forecasts through the in-sample mean, especially in high-frequency
trading environments. Here, predictions are typically very close to null values,
making any substantial prediction error a significant obstacle to beating the
in-sample mean in terms of R2

OS. Despite this, the challenge presented by the
in-sample mean’s performance does not extend to its accuracy in predicting
the direction of portfolio movements minute-by-minute.

This discrepancy highlights the crucial distinction between the ability
to predict accurate future values and the ability to correctly anticipate only
the direction of a portfolio’s movements, highlighting the usefulness of the
in-sample mean in certain contexts despite its limitations in others.

When analyzing the performance of the AR(3) and AR(h) models
through the lens of Accuracy, they demonstrate an intriguing pattern of results.
These models, serving as additional benchmarks, reveal a different picture of
prediction accuracy when compared to their results in the context of R2

OS.
The AR(3) model, in particular, performs in certain segments of the sample,



Figure 4.7: Accuracy of In-Sample Mean Model
This figure presents the results in terms of Accuracy for the In-Sample Mean predictive model. The Accuracy
is calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.

providing significantly positive Accuracy rates, as illustrated in Figure 4.8.
This suggests that, despite the simplicity of the model, it has the ability to
accurately predict the direction of portfolio movements based on the size factor
during specific intervals, highlighting its value in certain market conditions.

On the other hand, the performance of the AR(h) model, although de-
signed to adapt its complexity based on the Bayesian Information Criterion
(BIC) to potentially improve predictive accuracy, appears to fail significantly
over parts of the period under analysis. The figure 4.9 illustrates that this
model often produces results that are not statistically significant. The rea-
sonably different success between these two autoregressive models highlights
the complexity of financial market data and the need for models that balance
adaptability with predictive accuracy.

Furthermore, the comparative improvement in Accuracy for these models
over the performance of R2

OS also highlights the essential aspect of financial
forecasting, where the ability to correctly forecast the direction of movement
of a portfolio may be different from the accuracy of predictions in terms
of magnitude of return. This is particularly relevant in trading strategies
where the main objective is to capitalize on directional movements rather than
predicting specific return values.

Among the models evaluated, Ridge regression stands out for its unex-
pected Accuracy results, as evidenced by the data illustrated in Figure 4.10.
Despite its depressing performance in terms of out-of-sample R2, suggesting a
lesser ability to accurately predict portfolio returns, the model demonstrates a
surprising ability to predict the direction of movements of the portfolio based
on size. This peculiar result suggests that although Ridge regression may not
be excellent at capturing the exact magnitude of returns due to its regulariza-
tion mechanism that potentially smooths out some predictive power, it retains



Figure 4.8: Accuracy of AR(3) Model
This figure presents the results in terms of Accuracy for the AR(3) predictive model. The Accuracy is
calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.

Figure 4.9: Accuracy of AR(h) Model
This figure presents the results in terms of Accuracy for the predictive model AR(h) (h defined using the
Bayesian Information Criterion). The Accuracy is calculated from the Equation 4-2 based on the predicted
and true values from the first forecast at 12:04 pm to the last one at 3:59 pm for a given day. The solid
black line represents the monthly average of these results, while the gray band illustrates the 95% confidence
interval of these results. The black dashed line represents the average of the model results for the entire
analyzed period, while the red dashed line represents the benchmark model interpreted as flipping a coin
and assigning a positive movement in case of heads and a negative movement in case of tails.



a surprising ability in understanding the trend of portfolio movements.

Figure 4.10: Accuracy of Ridge Model
This figure presents the results in terms of Accuracy for the Ridge predictive model. The Accuracy is
calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.

The fact that the model has a higher Accuracy again implies that, in
the context of high-frequency financial data, the ability to predict directional
movements does not necessarily correlate with the model’s ability to predict
return values accurately. This discrepancy highlights the usefulness of Ridge
regression in scenarios where the primary objective is to identify directions of
movements rather than quantifying specific future returns, offering valuable
implications for trading strategies that rely more on market dynamics than
exact return projections.

The LASSO and AdaLASSO models stand out for their consistent
forecasting effectiveness, evidenced by their performance in both Accuracy
and R2

OS measures. These models have demonstrated their ability to achieve
significantly positive accuracy results also in terms of Accuracy over several
months, a testament to their robustness in high-frequency financial market
predictions, as presented in Figures 4.11 and 4.12.

The LASSO model, known for its ability to select and regularize variables,
effectively reduces the complexity of models by penalizing the absolute size of
regression coefficients. Doing so not only mitigates the risk of overfitting, but
also improves the interpretability of the model by keeping only the variables
with the greatest predictive power. This feature is particularly beneficial in the
context of financial data, where the large number of potential predictors can
easily lead to complex and difficult to interpret models.

Adaptive LASSO, based on the fundamentals of the LASSO model,
by adjusting the penalty applied between different coefficients based on the
parameters estimated by LASSO, allows for more flexibility and potentially
improves forecast accuracy. The AdaLASSO feature significantly increases its



Figure 4.11: Accuracy of LASSO Model
This figure presents the results in terms of Accuracy for the LASSO predictive model. The Accuracy is
calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.

Figure 4.12: Accuracy of AdaLASSO Model
This figure presents the results in terms of Accuracy for the AdaLASSO predictive model. The Accuracy
is calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.



robustness in distinguishing between relevant and irrelevant predictors, further
refining the model’s predictions.

The positive results observed with the LASSO and AdaLASSO models
during certain months highlight their effectiveness in predicting movements of
the portfolio based on the size factor. Its performance highlights the potential
of regularization techniques to increase the predictive power of traditional
statistical models, especially in environments characterized by a lot of noise
and an abundance of data.

The Random Forest model once again establishes itself as the best in
adapting to obtaining accurate predictions also in terms of Accuracy within
the set of models evaluated in this study. This non-parametric approach
has consistently demonstrated superior performance, achieving significantly
positive results that underline its effectiveness in predicting size-based portfolio
directional movements. As depicted in Figure 4.13, the model’s ability to excel
not only in terms of out-of-sample R2 but also in Accuracy highlights its
comprehensive predictive capabilities.

Figure 4.13: Accuracy of Random Forest Model
This figure presents the results in terms of Accuracy for the Random Forest predictive model. The Accuracy
is calculated from the Equation 4-2 based on the predicted and true values from the first forecast at 12:04
pm to the last one at 3:59 pm for a given day. The solid black line represents the monthly average of
these results, while the gray band illustrates the 95% confidence interval of these results. The black dashed
line represents the average of the model results for the entire analyzed period, while the red dashed line
represents the benchmark model interpreted as flipping a coin and assigning a positive movement in case of
heads and a negative movement in case of tails.

Random Forest effectively addresses the limitations of individual models
by ensambling predictions from multiple decision trees. This method reduces
the risk of overfitting by balancing the trade-off between bias and variance more
effectively than other statistical methods. Furthermore, its inherent mechanism
for dealing with non-linear relationships and interactions between predictors
without the need for explicit specification makes it particularly suitable for the
complex dynamics of financial markets.

The results in terms of Accuracy, covering the entire study period, are
compiled in Table 4.2. This table serves as a quantitative summary, presenting
mean and standard deviation metrics, to provide a comparative perspective
on the performance of various models. The diversity in model performance



underscores the importance of selecting the appropriate forecasting tool based
on the specific needs and dynamics of the financial markets in question.

Table 4.2: Descriptive Results of Accuracy (%)
This table presents the descriptive statistics of the mean and standard deviation for the model results
In-sample mean, AR(3), AR(h) with h determined by the Bayesian information criterion, Ridge, LASSO,
AdaLASSO and Random Forest, in terms of Accuracy. The Accuracy was calculated using Equation 4-2.

In-Sample Mean AR(3) AR(h) Ridge LASSO AdaLASSO Random Forest
Mean 49.5837 51.8029 50.4688 57.2871 51.8964 51.9627 58.6372
Standard Deviation 3.5227 3.7208 3.7125 4.6235 4.3526 4.3848 4.7558

In conclusion, it becomes clear that forecasting in high-frequency finan-
cial markets presents a major challenge, with machine learning models, espe-
cially the non-parametric Random Forest model, standing out for its forecast-
ing ability both in terms of R2

OS as in Accuracy. The AR(3) and AR(h) models
have limitations in their predictions, highlighting the complexity of capturing
financial market dynamics with traditional econometric approaches. Interest-
ingly, the Ridge regression model, despite its poor result in terms of R2

OS, was
shown to be capable of accurately predicting the direction of portfolio move-
ments, suggesting its potential usefulness in certain predictive contexts. Mean-
while, the regularization techniques employed by the LASSO and AdaLASSO
models have produced promising results, emphasizing the importance of mod-
els that perform predictor selection among a huge set of candidates.



5
Predictor Analysis

The predictor analysis in this study, inspired by work carried out in
Chinco, Clark-Joseph and Ye (2019), adopts three distinct approaches to
examining the selected predictors. Initially, we investigated whether there is
any prior bias in the model selection performed by LASSO and AdaLASSO,
as well as in the relative importance attributed by the Random Forest model.
Furthermore, for the LASSO and AdaLASSO models, we explore the average
duration that a predictor remains selected during daily forecasts, along with
their respective sparsities.

The results are recorded at one-minute intervals for each day covered
by this research. In other words, for each minute between 12:04 and 15:59,
for LASSO and AdaLASSO models that perform model selection, we assign
values of 0, 1, 2 or 3 to each company, indicating respectively whether none,
one, two or three lags of this company were selected. In the case of the Random
Forest model, in the same way, we record the importance of the predictor in
an aggregated manner for each minute of a given day. This means that if, for
example, a company obtains importance of 0.1, 0.2 and 0.3 for its three lags
in a given minute, the aggregate value of importance for that company is 0.6
on that specific day.

5.1
Unexpected

In this section, we seek to identify predictors that may stand out among
market capitalization percentiles and industry classification in predicting size-
based portfolio returns. To this end, we investigated whether there is a signif-
icantly greater proportion of companies selected by LASSO and AdaLASSO,
as well as a greater relative importance attributed by Random Forest, in any
of these segmentations.

To consolidate these results, we aggregated the one-minute frequency
results for a daily perspective. Thus, in the LASSO and AdaLASSO models,
we count the number of times any lag of an action was selected as a predictor
within a specific day. In the case of the Random Forest model, we first
normalize the importance of each company for each minute, considering its
proportion within that period. We then aggregate these relative importance
values to a daily level, calculating the average. This way, we obtain an average
value of relative importance for each company during a given day.

The classification of companies is initially segmented by size factor
percentiles and, subsequently, by industry classification. This allows us to check
whether stocks in a specific percentile or industry are more frequently selected
by the LASSO and AdaLASSO models, or whether, in the case of the Random
Forest model, there is a different relative importance for stocks between these
classifications.

In the first approach, when grouping the predictors into their respective
percentiles, we consider the number of candidate predictors in each percentile.



For the LASSO and AdaLASSO models, we calculate the ratio of selected
predictors from companies belonging to a percentile to the total number of
candidates in that same percentile and normalize this value for each day.
In the case of the Random Forest model, we followed a similar procedure,
computing the ratio between the aggregate mean of relative importance and the
number of candidates for each percentile. Again, these values were normalized
in proportion for each day.

The results of this analysis are presented in Table 5.1. We observed that,
in the case of Random Forest, no percentile demonstrated significantly different
behavior in terms of importance in portfolio prediction. As for the LASSO
and AdaLASSO linear models, the results indicate a tendency to select larger
capitalization stocks more frequently, although the considerable errors make
any conclusive statement difficult.

Table 5.1: Predictor Analysis by Factor Size Percentile
This table presents the descriptive statistics of the mean and standard deviation (in parentheses) for the
model selection results of the Random Forest, LASSO and AdaLASSO models using the size factor percentiles
as the segmentation criterion. The numbers represent the proportion of relative importance (Random Forest)
and selected predictors (LASSO and AdaLASSO) within each of the size factor percentiles. The results of
relative importance (Random Forest) and selected predictors (LASSO and AdaLASSO) were computed for
each of the minutes in which there was a prediction. These results were aggregated for each percentile
taking into account the number of candidates within each percentile and finally aggregated at a daily level.
The mean and standard deviation were calculated from the results on a daily basis.

Percentile 1 Percentile 2 Percentile 3 Percentile 4 Percentile 5 Percentile 6 Percentile 7 Percentile 8 Percentile 9 Percentile 10

Random Forest 11.8011
(1.9611)

10.5406
(1.7242)

9.7506
(1.5513)

9.7024
(1.6937)

10.1966
(2.0933)

10.2876
(2.3683)

10.2920
(2.5508)

10.0616
(3.2169)

9.6704
(3.9348)

8.9649
(4.3135)

LASSO 14.0076
(12.9231)

13.1883
(11.9625)

12.7703
(12.0027)

11.1647
(11.5449)

11.3704
(12.5764)

11.1841
(13.1492)

10.5646
(14.3474)

7.3570
(12.9902)

5.0503
(12.4439)

3.9662
(11.7470)

AdaLASSO 13.8832
(12.8807)

13.1147
(12.025844)

12.724765
(12.031016)

11.1785
(11.6196)

11.4250
(12.6630)

11.2277
(13.2226)

10.5676
(14.4273)

7.3723
(13.0266)

5.1539
(12.5969)

3.9803
(11.8519)

Similarly, predictors are grouped by industry. The results presented
in Table 5.2 corroborate previous analyses. In the Random Forest model,
only the Information sector seems to be slightly more relevant in predicting
portfolio returns compared to the other sectors. In the LASSO and AdaLASSO
models, we again observed that some industries seem to have a greater average
importance, however, again the substantial deviations make any definitive
conclusion difficult.



Table 5.2: Predictor Analysis by Industry Classification
This table presents the descriptive statistics of the mean and standard deviation (in parentheses) for the
model selection results of the Random Forest, LASSO, and AdaLASSO models using industry classification as
the segmentation criterion. The numbers represent the proportion of relative importance (Random Forest)
and selected predictors (LASSO and AdaLASSO) within each of the industries. The results of relative
importance (Random Forest) and selected predictors (LASSO and AdaLASSO) were computed for each of
the minutes in which there was a prediction. These results were aggregated for each industry taking into
account the number of candidates within each industry and finally aggregated at a daily level. The mean
and standard deviation were calculated from the results on a daily basis.

Manufacturing Finance and Insurance Information Retail Trade Professional, Scientific,
and Technical Services Utilities

Random Forest 6.6649
(1.2340)

6.3807
(1.4659)

8.2987
(2.0984)

5.9129
(1.3517)

6.8842
(2.1575)

5.7251
(2.1039)

LASSO 9.6659
(9.7015)

9.4400
(12.1061)

7.6289
(10.5553)

7.7805
(10.8311)

7.2039
(11.3003)

3.2432
(8.5857)

AdaLASSO 9.6986
(9.8022)

9.3984
(12.0621)

7.6270
(10.5464)

7.8162
(10.8750)

7.2571
(11.3777)

3.2560
(8.6314)

Wholesale Trade Mining, Quarrying,
and Oil and Gas Extraction

Transportation
and Warehousing

Accommodation
and Food Services

Administrative and Support
and Waste Management and
Remediation Services

Health Care and
Social Assistance

Random Forest 6.0770
(1.9459)

5.7613
(1.4507)

6.0700
(1.8360)

5.9481
(2.1633)

5.8238
(2.1317)

6.1561
(2.6520)

LASSO 6.4419
(11.8066)

7.2438
(10.9843)

6.5888
(11.6697)

5.3149
(11.1046)

5.4033
(11.8202)

3.9777
(10.6343)

AdaLASSO 6.4553
(11.9398)

7.2275
(10.9580)

6.6040
(11.7162)

5.3207
(11.2189)

5.3834
(11.8971)

4.0022
(10.7195)

Real Estate and
Rental and Leasing

Arts, Entertainment,
and Recreation Construction Other Services (except

Public Administration)
Agriculture, Forestry,
Fishing and Hunting

Educational
Services

Random Forest 6.2540
(2.9573)

5.5482
(2.4261)

6.2153
(2.8424)

5.0595
(3.5694)

5.4551
(3.6353)

5.1500
(3.3097)

LASSO 5.9867
(14.1194)

4.5539
(11.8491)

7.3169
(14.5914)

2.6826
(10.7555)

2.1930
(10.6381)

2.3785
(9.7413)

AdaLASSO 5.9672
(14.1705)

4.5303
(11.9134)

7.2949
(14.6604)

2.6432
(10.7419)

2.0932
(10.5109)

2.3940
(9.8149)

In summary, we conclude that, overall, it is challenging to make definitive
statements about what type of predictor may be playing a more important role
in predicting size-based portfolio returns. This highlights the complexity of
the model identification problem, which transcends conventional approaches.
Therefore, a first characteristic we find among candidate predictors in size-
based portfolio forecasting is that they are unexpected.

5.2
Short-Lived

In this section, we highlight the importance of adopting a rolling window
modeling approach, which estimates parameters for each subsequent forecast.
To do this, we focus on the duration that a predictor remains selected by the
LASSO and AdaLASSO models.

We approach this question in the following way: for each company
considered as a candidate predictor, we check whether any of its lags were
selected at any minute during a specific day. If a company had any of its lags
selected at one minute, we begin to count how long that selection persists.
For each subsequent minute in which a delay remains selected, we increase
this duration parameter by one unit. Counting stops when no lag is selected
anymore. If any lag is selected again, we start a new independent count. We
repeat this procedure for each stock.

This gives us data on the duration of various selections. We calculate the
probability between these selections, obtaining the probability of a duration
being greater than x minutes. It is important to highlight that we only
performed this calculation for stocks that were selected during the day in
question, which gives a specific interpretation. Thus, the result obtained is the
probability that the duration of an action remains selected for more than x
minutes, given that this action was selected on that day. This probability is
expressed in Equation 5-1.



P(Duration ≥ x | i ∈ Id) (5-1)
where x represents the minutes, i is the company index and Id is the set of
companies selected on day d.

In Figure 5.1, we present the results for both the LASSO and AdaLASSO
models. As the results vary for each day, that is, the probability of the duration
being greater than or equal to 2 minutes on the first day of the sample, January
3, 2005, may not necessarily be equal to the probability on the last day,
December 31, 2019, then we can calculate a 95% confidence interval for these
results. The graph highlights the point commonly used in the literature, with
α = 0.05, showing that the probability of the duration of an action remaining
selected for more than 16.66 and 16.96 minutes by the LASSO and AdaLASSO
models, respectively, is 5%.

Figure 5.1: Probability of Duration being greater than x minutes
This figure presents the probability that each company will remain selected as a predictor for more than x
minutes, given that these companies were selected on this day. This is represented by P(Durationi ≥ x |
i ∈ Id), where Id denotes the set of companies selected on day d. To calculate this number, we look at
each of the companies that had one of their lags selected during the day and count the duration while any
lag from the same company is being selected. The count stops when none of its lags are selected, and if
there is another selection ahead, a new count begins. Thus, we obtain the duration (possibly more than
one) for each of the companies, allowing us to calculate the probability of these durations for the day in
question. The graph on the left presents the results for the LASSO model, while the graph on the right
presents the results for the AdaLASSO model. In the figure, each solid black line expresses the probability
that the duration of a company i is greater than x minutes, given that this company was selected on day
d. The gray band around each line represents the 95% confidence interval. Furthermore, the dashed lines
indicate the points at which the probability of the duration of a given company being greater than 16.66
and 16.96 minutes, given that this company was selected on this day, is 5%, for the LASSO and AdaLASSO
models, respectively.

With this analysis, we can conclude that, even among only companies
that were selected on a given day, the duration of their selection is low. Thus,
we find evidence to say that size-based portfolio predictors are short-lived.

5.3
Sparse

In the analysis of sparsity over selected predictors in the context of
forecasting the one-minute-ahead returns of a portfolio based on the size factor,
the LASSO and AdaLASSO models show remarkable selectivity among a
substantial set of candidate predictors. Given an average of 1747 candidate



predictors, both models discern and use, on average, only 1.4 predictors
per minute, concluding the sparse nature of this predictive environment in
finance. This minimal selection highlights the models’ efficiency and accuracy
in isolating the most influential predictors from a vast data set. Such sparsity
is not only indicative of the robustness of the models against overfitting, but
also highlights their ability to identify the most significant features amidst so
much noise, which is fundamental in high-dimensional data scenarios typical
of financial time series.

The methodological approach, which involves counting selected predic-
tors every minute and subsequent aggregation into monthly averages, allows
for an understanding of model selection behavior over time. The resulting num-
bers, which trace the evolution of the number of candidates and the average
number of selected predictors, as presented in Figures 5.2 and 5.3, offer a vi-
sual representation of the behavior of the LASSO and AdaLASSO in terms of
sparsity.

Figure 5.2: Number of Predictor Candidates
This figure shows the evolution of the number of candidate predictors over the years. The solid black line
represents the monthly average of this number, while the gray band around it indicates the 95% confidence
interval. Furthermore, the dashed line shows the average number of candidate predictors for the entire period
covered.

The result observed in the LASSO and AdaLASSO models aligns with the
theoretical expectations of these regularization techniques, designed to improve
model interpretability and prediction accuracy by imposing restrictions that
limit the number of variables included in the final model. This feature is
particularly beneficial in financial econometrics, where large volumes of data
can easily lead to complex models that may not generalize well to a predictive
environment.

Overall, the findings from this sparsity analysis contribute to our under-
standing of the predictive dynamics at play in size-based portfolio returns.
They reflect the critical balance between model complexity and predictive
power, affirming the value of the LASSO and AdaLASSO models in effectively
addressing the high-dimensional space of financial predictors.

The comprehensive analysis of predictors in this study elucidates three
principal attributes of the predictors when forecasting size-based portfolio



Figure 5.3: Number of Predictors Selected
This figure shows the evolution of the number of predictors selected over the years. The upper graph presents
the results for the LASSO model, while the lower graph presents the results for the AdaLASSO model. The
solid black line represents the monthly average of this number, while the gray band around it indicates the
95% confidence interval. Furthermore, the dashed line shows the average number of predictors selected for
the entire period covered.

returns: they are unexpected, short-lived, and sparse, features also found by
Chinco, Clark-Joseph and Ye (2019). This triad of characteristics underscores
the unpredictable essence of financial markets, as delineated by the inability to
consistently identify specific predictors or sectors that uniformly exhibit higher
importance or selection frequency across models. The short-lived attribute
of predictor selection further accentuates the dynamic and volatile financial
market environment, highlighting that even the predictors that are selected
maintain their relevance for merely fleeting moments. The sparsity observed
in the model’s selection process by LASSO and AdaLASSO models—which
select, on average, merely 1.4 predictors out of thousands—underscores that
just a small handful of variables are really important in forecasting this
portfolio. This sparsity indicates a focused approach in cutting through the
vast data noise to pinpoint the genuinely impactful predictors. Together, the
unexpectedness, short-lived nature, and sparsity of predictors shine a light on
the complex dynamics of financial time series forecasting. These findings pose
both challenges and opportunities for the ongoing development and refinement
of econometric models, aiming for enhanced predictability and understanding
of market behaviors.



6
Conclusion

Forecasting returns on financial assets in high-frequency environments
represents a critical challenge in contemporary financial economics. This study
was dedicated to significantly advancing this area by adopting an approach
that employs machine learning (ML) techniques to forecast size-based portfolio
returns one minute in advance. More than just improving forecasts, our goal
was to understand the underlying source of predictability in returns.

Throughout this research, we conducted a detailed exploration, covering
both traditional econometric models and advanced ML techniques. We use
a broad dataset of stock returns as predictors, consistently identifying the
superiority of ML models over benchmark models in terms of predictability.
Notably, the Random Forest model emerged as the most effective among them.

Furthermore, the investigation of the predictors selected by the models
revealed important characteristics. These predictors are predominantly unex-
pected, short-lived and sparse, highlighting the need for advanced approaches
to deal with the complexity and volume of data in modern financial markets.

In summary, this research represents a significant contribution to the
field of predicting returns on financial assets in high-frequency environments. It
reinforces the argument in favor of using machine learning models in financial
forecasting and highlights the complexity underlying forecasting returns in
dynamic, high-dimensional environments.
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A
Appendix

A.1
Figures

Figure A.1: Number of Firms Before and After Filtering Process in Returns Data
set

This figure shows the evolution of the number of firms before and after the filtering process of the stock
return data set. The initial stock returns dataset incorporates companies listed on the United States stock
exchanges New York Stock Exchange (NYSE), Nasdaq (NASDAQ), and American Stock Exchange (AMEX).
The filtering process applied to this dataset removes stocks with a closing price of less than U$5 on the
previous day. Also, stocks with more than 20% zero returns were systematically excluded.

Figure A.2: Number of Firms Matching on Returns and Factors Data Sets
This figure presents the number of firms in the two data sets: Returns and Factors. To construct the portfolio
based on size, it was necessary to join these two sets of data using the PERMNO identifier variable for each
company. The figure also illustrates the number of companies that contain this variable declared in both
databases.



Figure A.3: Empirical Distributions of 10 Percentiles Size Factor-Based Portfolios
This figure presents the empirical probability distribution of the average daily return of portfolios based on
the k-th decile. The portfolios were constructed from the set of initial stock returns (without the filtering
process presented in Figure A.1) using market value as the portfolio weighting criterion. The portfolios were
constructed at a one-minute frequency, but the empirical probability distributions of these portfolios consider
the average of daily returns.

Figure A.4: Number of Firms on Long and Short Position
This figure presents the number of firms that are in the top three deciles (long) and the bottom three deciles
(short) based on the size factor.



Figure A.5: Series of Size Factor-Based Portfolio Returns
This figure presents the time series of portfolio returns based on the size factor.

Figure A.6: Distribution of Size Factor-Based Portfolio Returns
This figure presents the empirical probability distribution of portfolio returns based on the size factor.



Figure A.7: Rolling Window Scheme
This figure presents the forecast scheme using the rolling window for a specific day.



A.2
Tables

Table A.1: Descriptive Statistics of 10 Percentiles Size Factor-Based Portfolios
This table presents the estimated descriptive statistics of the mean and standard deviation for portfolios
based on the size factor. Each portfolio was constructed using the set of shares of companies belonging to
the respective decile, operating in the long position and using market capitalization as the portfolio weighting
criterion.

Percentile 1 Percentile 2 Percentile 3 Percentile 4 Percentile 5 Percentile 6 Percentile 7 Percentile 8 Percentile 9 Percentile 10
Mean 0.0 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0 0.0
Standard Deviation 0.000023 0.000026 0.000027 0.000027 0.000028 0.000031 0.000032 0.000033 0.000036 0.000027
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